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Abstract. A one-dimensional model having a unique ground state and countable number of
extreme limit Gibbs states is constructed.

1. The main result

During recent decades the problem of phase transitions in one-dimensional models has
been studied extensively [1–6]. In [7] the following conjecture was formulated: any one-
dimensional model with discrete (at most countable) spin space and with a unique ground
state has a unique Gibbs state if the spin space of this model is finite or the potential of this
model is translationally invariant.

The conjecture originates from [7], where it is proved that in a one-dimensional
antiferromagnetical model with the Hamiltonian

H(ϕ(x)) =
∑

x,y∈Z1;x>y
U(x − y) ϕ(x) ϕ(y)− µ

∑
x∈Z1

ϕ(x)

whereµ is the external field and the potentialU(x) is non-negative convex function which
is extendible to a twice continuously differentiable function such thatU(x) ∼ Ax−γ , U ′ ∼
−Aγx−γ−1, U ′′(x) ∼ Aγ (γ +1)x−γ−2 at x →∞; whereγ > 1, andA is a strong positive
constant, has a unique ground state at low temperatures.

The ground states of this model are functions of the external field and this relation
is very sophisticated [8, 9]. It turns out that at any fixed value of the external field this
model has a unique ground state to within translations. The method of [7] substantially
uses the facts that the model is one dimensional, the ground state of the model is unique (to
within translations) and that the ground state satisfies the Peierls condition. The uniqueness
of the limit Gibbs states is proved by showing that since the ground state is unique the
configuration with the minimal energy at any boundary conditions almost coincides with
the ground state and the dependence of any eventϕ(A) on the boundary conditions can be
expressed via the sum of terms connectingA with the boundary, and since the dimension is
one (the terms connectingA with the boundary are very long and their entropy is not large
enough) this dependence is very weak.

Since in two- or more dimensional models with a unique ground state and with the
Gibbs state related to the ground state different entropy Gibbs states are possible (like those
in the Potts model) the conjecture is formulated in one dimension.
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In [7] it is shown that the violation of the conditions of the conjecture leads to the
existence of a phase transition in a model with a unique ground state. In this paper we
generalize the result of [7] by defining a model (1) (with countable spin space and non-
translationally invariant potential) with a unique ground state having infinitely many extreme
limit Gibbs states.

In one dimension any limit Gibbs state of the model is translationally invariant [8].
Moreover, limit Gibbs states of any model satisfying the condition∣∣∣∣ ∑

A⊂(−∞,m];B⊂[m,∞)
U(ϕ(B ∪ A)− U(ϕ(B + l ∪ A)

∣∣∣∣ < constant

where the inequality is held uniformly with respect toϕ(x) and integersm, l are
translationally invariant. This fact is a good reason for the absence of phase transitions
in antiferromagnetic models. Below we construct a ferromagnetical model with countably
many limit Gibbs states.

Consider a ferromagnetical model onZ1 with the Hamiltonian

H(ϕ(x)) =
∑
x∈Z1

U1
x,x+1(ϕ(x), ϕ(x + 1))+ U2

x (ϕ(x)). (1)

The spin space8 of the model (1) consists of a countable number of alpha spins
αmi , wherem, i = 1, 2, . . . and a gamma spinγ . All spins are two-dimensional vectors:
γ = (1, 0) andαmi is a vector(cosθm, sinθm) of ith colour, whereθm = 2π(1−1/2m). The
zero-interaction measureλ on the space8 is a counting measure [10, 11].

Below we define the functionsU1
x,x+1(ϕ(x), ϕ(x+1)) andU2

x (ϕ(x)). The first function
U1
x,x+1(ϕ(x), ϕ(x + 1)) is bounded in any finite volume and the second functionU2

x (ϕ(x))

plays the role of the external field (at fixedm it only controls the number of ‘admitted’αmi
spins).

The pair potential function of nearest neighboursU1
x,x+1(ϕ(x), ϕ(x + 1)) is symmetric

with respect to the two arguments

U1
x,x+1(ϕ

′, ϕ′′) = U1
x,x+1(ϕ

′′, ϕ′)

and

U1
x,x+1(ϕ(x), ϕ(x + 1)) = U1

−x−1,−x(ϕ(−x − 1), ϕ(−x)).
For non-negativex ∈ Z1 U1

x,x+1(ϕ(x), ϕ(x + 1)) is defined as (m, i, j = 1, 2, . . .)

U1
x,x+1(γ, γ ) = 0 U1

x,x+1(α
m, γ ) = m

U1
x,x+1(α

m
i , α

m
j ) = m U1

x,x+1(α
m
i , α

k
j ) = fx(m, k)

(2)

where

fx(m, k) = − ln
(((

4
3

)1/2x − 1
)
/2
)+m+ k.

The functionU2
x (ϕ(x)) playing the role of the external field is symmetric with respect

to the pointx = 1
2. Thus,U2

x−1(ϕ(x − 1)) = U2
−x(ϕ(−x)) for x > 0. For positivex ∈ Z1

U2
x (ϕ(x)) is defined as

U2
x (γ ) = 0 U2

x (α
m
i ) = 0 if i 6 gx U2

x (α
m
i ) = ∞ if i > gx (3)

where

gx = 2
((

4
3

)1/2x − 1
)−1
.

It can be readily verified that the configurationϕ(x) = γ, x ∈ Z1 is the only ground
state of the model (1).
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The model constructed in [7] has three types of spins:α, β andγ . The unique ground
state of the model is a constant configurationϕ(x) = γ and theα andβ spins generating
two extreme Gibbs states are symmetric with respect to each other. The model (1) has
countable types of spins:αm andγ . At each value of the external field the finite number
of different αm spins, namelyαmi spins are allowed. But the number of allowedαmi spins
at any fixed value ofm is not uniformly bounded: the number of allowed spins tends to
infinity as x grows.

In this model the unique ground state of the model is a constant configurationϕ(x) = γ
but the αm spins are not symmetric. Since we have countable types of spins for the
convergence of the partition function (lemma 1) we use the conditions (2) and for
guaranteeing of lemma 3 we define the functionfx(m, k) as a function depending onx
(as in [7]) plus a term involvingm andk.

Let IV be the segment [−V,+V ]. Suppose the boundary conditionsϕ1(x) = ϕ1(x), x ∈
Z1− IV are fixed and

HV (ϕ(x)|ϕ1(x)) =
V∑

x=−V−1

U1
x,x+1(ϕ(x), ϕ(x + 1))+

V∑
x=−V

U2
x (ϕ(x)).

Let us define the partition function

4V =
∑

ϕ(x)∈8V
exp(−βHV (ϕ(x)|ϕ1(x)))

corresponding to the boundary conditionsϕ1(x), x ∈ Z1− IV is finite.

Lemma 1. For any fixed value ofV 4V <∞.
It follows from lemma 1 that Gibbs distribution in any volumeV corresponding to

arbitrary boundary conditionsϕ1(x), x ∈ Z1 − IV is well defined. In further calculations
we restrict the value of the temperature byβ > 1, whereβ−1 = kT , T is the temperature,
k is the Boltzmann constant.

Theorem. Let T < 1. For anym there exists limit Gibbs state of the model (1)P αm such
that

P αm(ϕ(0) = αm) =
∞∑
i=1

P αm(ϕ(0) = αmi ) > 1
2. (4)

2. Proofs

We start this section with the proof of lemma 1.

Proof of lemma 1. Let us fixV and the boundary conditionsϕ1(x), x ∈ Z1− IV :

4V =
∑

ϕ(x)∈8V
exp

(−βHV (ϕ(x)|ϕ1(x)
))

=
∑

ϕ(x)∈8V
exp

(
−β

V∑
x=−V−1

U1
x,x+1(ϕ(x), ϕ(x + 1))+

V∑
x=−V

U2
x (ϕ(x))

)

=
∑

ϕ(x)∈8V

V∏
x=−V−1

exp
(−βU1

x,x+1(ϕ(x), ϕ(x + 1))
) V∏
x=−V

exp
(−βU2

x (ϕ(x))
)
.

The notationγ = α0
0 will be convenient for further calculations.
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The last summation is taken over all possible configurations,

ϕ(x) = (ϕ(−V − 1), ϕ(−V ), . . . , ϕ(V )) = (αm(−V−1)
i(−V−1) , α

m(−V )
i(−V ) , . . . , α

m(V )

i(V )

)
wherem and i take all non-negative integers, and the indices ofα are both together zeros
or non-zeros.

Thus, the partition function can be written as

4V =
∑

(m(−V−1),m(−V ),...,m(V ))

∑
(i(−V−1),i(−V ),...,i(V ))

×
V∏

x=−V−1

exp(−βU1
x,x+1(ϕ(x), ϕ(x + 1)))

V∏
x=−V

exp(−βU2
x (ϕ(x))). (5)

Due to (3) for each fixed collection(m′(−V − 1),m′(−V ), . . . , m′(V )) there are just a
finite number of collections(i(−V − 1), i(V ), . . . , i(V )), such that the corresponding term
in the summation (5) is non-zero (for othersU2

x (ϕ(x)) = ∞).
Therefore, in order to prove the lemma, it is enough to show that

4V =
∑

1

V∏
x=−V−1

exp
(−βU1

x,x+1(ϕ(x), ϕ(x + 1))
) V∏
x=−V

exp
(−βU2

x (ϕ(x))
)

=
∑

1

V∏
x=−V−1

exp(−βU1
x,x+1(ϕ(x), ϕ(x + 1))) <∞

where in
∑

1 the summation is taken over all possible configurations(
α
m(−V−1)
1 or γ, αm(−V )1 or γ, . . . , αm(V )1 or γ

)
.

Now we note that∑
1

V∏
x=−V−1

exp(−βU1
x,x+1(ϕ(x), ϕ(x + 1))) 6

V∏
x=−V−1

Mx

where

Mx =
∑
k,l

exp(−βU1
x,x+1(α

k
1, α

l
1))+

∑
k

exp(−βU1
x,x+1(α

k, γ ))+ exp(−βU1
x,x+1(γ, γ ))

and the summation is taken over all possible natural numbersk and l. It can be easily
shown that due to the conditions (2)Mx is finite. The lemma is proved. �

Define the Gibbs distributionPV (ϕ(x)|ϕαm) in the space8V corresponding to the
boundary conditionsϕα

m

(x) = αm1 , x ∈ Z1 − [−V, V ]. Let P αm be a limit point of the
sequence of Gibbs distributionsPV (ϕ(x)|ϕαm) whenV goes to infinity. This limit point
P αm is a limit Gibbs state of the model (1) [8, 9].

Proof of the theorem. In order to prove the theorem we show thatP αm satisfies (4).
To prove (4) it is enough to show that at any value ofV PV (ϕ(0) = αm|ϕαm) > 9

16.

Let PV (ϕ(x) = αm, x ∈ [−V, V ]|ϕαm) = PV (
⋂V
x=−V

⋃∞
i=1(ϕ(x) = αmi |ϕα

m

).
Obviously,PV (ϕ(0) = αm|ϕαm) > PV (ϕ(x) = αm, x ∈ [−V, V ]|ϕαm).

In order to prove (4) we shall prove that

PV (ϕ(x) = αm, x ∈ [−V, V ]|ϕαm) > 9
16. (6)

Define a Gibbs distributionPV (ϕ(x)|ϕαm,lef t ) in the space8V corresponding to the
boundary conditionsϕα

m,lef t (x) = αm1 , x ∈ (−∞,−V − 1] and ϕα
m,lef t (x) = ∅, x ∈

[V + 1,∞).
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By definition

PV
(
ϕ(x) = αm|ϕαm) = ∑

αm exp
(−β(H (ϕ(x)|ϕαm)))∑

exp
(−β(H (ϕ(x)|ϕαm))) (7)

PV
(
ϕ(x) = αm|ϕαm,lef t) = ∑

αm exp
(−β(H (ϕ(x)|ϕαm,lef t)))∑

exp
(−β(H (ϕ(x)|ϕαm,lef t))) (8)

where the summations in both numerators are taken over all configurationsϕ(x) ∈ 8V such
that ϕ(x) = αmi for somei and both summations in the denominators are taken over all
configurationsϕ(x) ∈ 8V .

In the model (1) ‘adjacent’ spins (αmi spins at fixedm or γ spins) tend to be aligned.
That is, the Hamiltonian (1) can be interpreted as ferromagnetic and the following inequality
is a natural ferromagnetic inequality. �

Lemma 2.

PV (ϕ(x) = αm, x ∈ [−V, V ]|ϕαm,lef t ) 6 PV (ϕ(x) = αm, x ∈ [−V, V ]|ϕαm).

Proof. Let us compare numerators and denominators of (7) and (8). Each term in the
numerator of (7) is equal to exp(−mβ) times the corresponding term of (8). Each term in the
denominator of (7) is equal to exp(−mβ) (respectively exp(−fxβ)) times the corresponding
term of (8) if at x = V ϕ(x) = αmi for somei or ϕ(x) = γ (respectivelyϕ(x) = αkj for
somek 6= m andj ).

Sincefx > m, the lemma is proved. �
It follows from lemma 2 that the theorem is a consequence of the following.

Lemma 3.

PV (ϕ(x) = αm, x ∈ [−V, V ]|ϕαm,lef t ) > 9
16. (9)

Proof. Consider a Markov chain (non-homogeneous) starting at pointx = −V and ending
at pointx = V with initial conditionϕ(−V−1) = α1 with transition probabilitiesπξ(x),ξ(x+1)

(πξ(x),ξ(x+1) is the probability of the event thatϕ(x+1) = ξ(x+1) under the condition that
ϕ(x) = ξ(x)), where

πξ(x),ξ(x+1) = PV (ϕ(x + 1) = ξ(x + 1)|ϕ(x) = ξ(x), ϕ(x + 2) = ∅).
It follows from the definitions that

PV (ϕ(x) = ξ(x), x ∈ [−V, V ]|ϕαm,lef t ) = πξ(−V−1)=αm1 ,ξ(−V )
V−1∏
x=−V

πξ(x),ξ(x+1).

Define πξ(x)=αm,ξ(x+1)=αm =
∑
πξ(x)=αmi ,ξ(x+1)=αmj , where the summation is taken over all

possible values ofj (by definition the sum consists of a finite number of terms (due to (3))
and does not depend oni).

Thus,

PV (ϕ(x) = αm, x ∈ [−V, V ]|ϕαm,lef t ) = πξ(−V−1)=αm1 ,ξ(−V )=αm
V−1∏
x=−V

πξ(x)=αm,ξ(x+1)=αm

=
V−1∏

x=−V−1

πξ(x)=αm,ξ(x+1)=αm.
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Due to definitions (β > 1),

πξ(x)=αm,ξ(x+1)=αm

=
∑g(x+1)

i=1 exp(−βm)∑g(x+1)
i=1 exp(−βm)+∑∞k=1,k 6=m

∑g(x+1)
i=1 exp(−βfx+1(m, k))+ exp(−βm)

= g(x + 1) exp(−βm)
g(x + 1) exp(−βm)+∑∞k=1,k 6=m g(x + 1) exp(−βfx+1(m, k))+ exp(−βm)

= 1

1+∑∞k=1,k 6=m exp(−β(fx+1(m, k)−m))+ 1/g(x + 1)

> 1

1+∑∞k=1,k 6=m exp(−fx+1(m, k)+m)+ 1/g(x + 1)

> 1

1+ exp(−fx+1(m, k)+m+ k)+ 1/g(x + 1)
>
(

3
4

)1/2x+1

.

Since

PV (ϕ(x) = αm, x ∈ [−V, V ]|ϕαm,lef t ) >
( ∞∏
x=0

πξ(x)=αm,ξ(x+1)=αm
)2

in order to prove (9) it is enough to show that
∞∏
x=0

πξ(x)=αm,ξ(x+1)=αm > 3
4. (10)

The last inequality (10) follows directly:
∞∏
x=0

πξ(x)=αm,ξ(x+1)=αm >
∞∏
x=1

(
3
4

)1/2x = 3
4.

The inequality (10), and hence lemma 3 is proved. �

Now the inequality (6) is a direct implication of lemmas 2 and 3. The theorem follows
from the inequality (6).

3. Final remarks

The model (1) has the following unusual property:

P αm(ϕ(x1) = αm, ϕ(x2) = αm, . . . , ϕ(xl) = αm) > 1
2

where the last inequality is held uniformly with respect tol andx1, x2, . . . , xl .
The model (1) also has the following physical meaning.

(i) At zero temperature all spins of the model aligned:ϕ(x) = γ .
(ii) At non-zero temperatures since the ferromagnetical model has a very strong coupling

potential between aligned spinsαmi there existαm states at which almost all spins are
aligned.
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